

Videos as Teaching Tools: Not an Easy Way of Learning

Stephan Schwan

Video Lectures / Lecture Captures

- Permanent
- Accessible
- Repeatable
- Controllable
- Para-social
- Vivid

Problems: Video lectures as substitutes

User types

Minority of students uses video lectures as supplement for live lectures

O'Brien & Varna (2019)

Problems: Video lectures as substitutes

Bos, Groeneveld, Bruggen, & Brand-Gruwel (2016)

Massed instead of spaced learning

- Intensive use of video lectures in the weeks before exams
- Better exam scores with regular, distributed use of video lectures across semester

- High percentage of mind wandering episodes during video lectures
- Number of mind wandering episodes increases during a lecture
- Mind wandering rate correlates negatively with lecture comprehension

Risko, Buchanan, Medimorec, & Kingston (2013)

- Habitual multitasking (e.g. simultanous use of social web, news feeds, ...)
- … increases mind wandering
- ... decreases comprehension

Loh, Tan, & Lim (2016)

Journal of Educational Psychology 1984, Vol. 76, No. 4, 647-658 Copyright 1984 by the American Psychological Association, Inc.

Television Is "Easy" and Print Is "Tough": The Differential Investment of Mental Effort in Learning as a Function of Perceptions and Attributions

Gavriel Salomon Tel Aviv University, Tel Aviv, Israel

Shapter

Learning

Elizabeth L. Bjork and Robert Bjork

Making Things Hard on Yourself, But in a Good Way: Creating Desirable Difficulties to Enhance Learning

Carpenter, Wilford, Kornell, & Mullaney (2013)

Carpenter, Wilford, Kornell, & Mullaney (2013)

Desirable difficulties ... are desirable because they trigger encoding and retrieval processes that support learning, comprehension, and remembering.

Bjork & Bjork (2011)

How can we reduce students' illusions of understanding?

How do we get students **invest sufficient mental effort** in a video lecture?

How do we support strategies that **increase** storage strength?

Foster active elaboration of lecture content by **Self Assessment**

Prompt students to apply strategies that increase storage strength

- Short videos (< 10min) are watched more completely than medium length videos (10-30 min) and long videos (>30 min)
- Selective viewing: More local seeking behavior in long videos

 Watching videos completely leads to higher exam scores

Break up lectures into separate clips with distinctive topics

Ozan & Ozarslan (2016)

Establish attention catching cues

- Keep eye contact
- Use dynamic drawings

Fiorella, Stull, Kuhlmann, & Mayer (2019)

• Media Diversity

Include a range of different presentation formats (e.g., Talking Head plus Slides, Slides only, Animations, ...)

- BUT: Avoid overload, redundancy and irrelevant details!
- Successive diversity is better than simultaneous diversity

Fanguy, Costley, Baldwin, Lange, & Wang (2019) / Costley & Lange (2017

Foster active elaboration of lecture content by **Self Assessment**

Prompt students to apply strategies that increase storage strength

Test Ouestion:

Which part of a neuron is responsible for passing on the electrical signal that allows it to communicate with other neurons?

- a) Dendrite
- b) Synapse
- c) Axon
- d) Soma
- e) Sodium pump

Read Ouestion:

Which part of a neuron is responsible for passing on the electrical signal that allows it to communicate with other neurons?

- a) Dendrite
- b) Synapse
- c) Axon (Correct Answer)
- d) Soma
- e) Sodium pump

Corrall, Carpenter, Perkins, & Gentile (2020)

Corral, Carpenter, Perkins, & Gentile (2020)

Corral, Carpenter, Perkins, & Gentile (2020)

Introduce active pauses with testing

T = Tested Group, RS = Restudy Group, NT = Nontested Group

Szpunar, Khan, & Schacter (2013)

Introduce active pauses with testing

T = Tested Group, RS = Restudy Group, NT = Nontested Group

Szpunar, Khan, & Schacter (2013)

Introduce active pauses with testing

T = Tested Group, RS = Restudy Group, NT = Nontested Group

Szpunar, Khan, & Schacter (2013)

Foster active elaboration of lecture content by **Self Assessment**

Prompt students to apply strategies that increase storage strength

Prompts

Prompts **activate** already **available strategies** that learners are able to apply, but will not do it or will apply them to an insufficient degree

Scheiter, Schüler, & Eitel (2017)

- Initial explanation how to use video lectures
- Foster spaced learning through Notifiers of lectures going online
- Use Teasers for announcement of live lecture highlights
- Insert Self-Explanation Prompts throughout video lecture

Advance preparation: Short chapters with distinct topics

Catch and keep attention

Provide "user manual"

Use notifiers and teasers

Break up lecture into small clips

Include diverse presentation formats

Insert self-explanation prompts

Include quizzes

Advance preparation: Short chapters with distinct topics

Catch and keep attention

Break un lecture

Prov

Help students to choose demanding learning strategies voluntarily

and teasers

Include quizzes

Thank You for Your Attention.

s.schwan@iwm-tuebingen.de

References

Bjork, E. L., & Bjork, R. A. (2011). Making things hard on yourself, but in a good way: Creating desirable difficulties to enhance learning. *Psychology and the real world: Essays illustrating fundamental contributions to society* (pp. 59-68).

Bos, N., Groeneveld, C., Van Bruggen, J., & Brand-Gruwel, S. (2016). The use of recorded lectures in education and the impact on lecture attendance and exam performance. *British Journal of Educational Technology*, *47*, 906-917.

Carpenter, S. K., Wilford, M. M., Kornell, N., & Mullaney, K. M. (2013). Appearances can be deceiving: Instructor fluency increases perceptions of learning without increasing actual learning. *Psychonomic bulletin & review*, *20*, 1350-1356.

Corral, D., Carpenter, S. K., Perkins, K., & Gentile, D. A. (2020). Assessing Students' Use of Optional Online Lecture Reviews. *Applied Cognitive Psychology*.

Costley, J., & Lange, C. H. (2017). Video lectures in e-learning. *Interactive Technology and Smart Education, 14,* 14-30.

Fanguy, M., Costley, J., Baldwin, M., Lange, C., & Wang, H. (2019). Diversity in Video Lectures: Aid or Hindrance?. *International Review of Research in Open and Distributed Learning*, *20*(2).

Fiorella, L., Stull, A. T., Kuhlmann, S., & Mayer, R. E. (2019). Instructor presence in video lectures: The role of dynamic drawings, eye contact, and instructor visibility. *Journal of Educational Psychology*, *111*, 1162-1171.

References

Loh, K. K., Tan, B. Z. H., & Lim, S. W. H. (2016). Media multitasking predicts video-recorded lecture learning performance through mind wandering tendencies. *Computers in Human Behavior*, *63*, 943-947.

O'Brien, M., & Verma, R. (2019). How do first year students utilize different lecture resources?. *Higher Education*, *77*, 155-172.

Ozan, O., & Ozarslan, Y. (2016). Video lecture watching behaviors of learners in online courses. *Educational Media International, 53*, 27-41.

Risko, E. F., Buchanan, D., Medimorec, S., & Kingstone, A. (2013). Everyday attention: Mind wandering and computer use during lectures. *Computers & Education*, *68*, 275-283.

Salomon, G. (1984). Television is" easy" and print is" tough": The differential investment of mental effort in learning as a function of perceptions and attributions. *Journal of educational psychology*, *76*, 647-658.

Scheiter, K., Schüler, A., & Eitel, A. (2017). Learning from multimedia: Cognitive processes and instructional support. In S.Schwan & U. Cress (eds.), *The psychology of digital learning* (pp. 1-19). Springer, Cham.

Szpunar, K. K., Khan, N. Y., & Schacter, D. L. (2013). Interpolated memory tests reduce mind wandering and improve learning of online lectures. *Proceedings of the National Academy of Sciences*, *110*, 6313-6317.

